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SUMMARY

A new class of nonideal solutions is defined by constructing a function
to represent the composition dependence of thermodynamic properties for mem-
bers of the class, and some properties of these solutions are studied. The
constructed function has several useful features: (1) Its parameters occur
Tinearly. (2) It contains a logarithmic singularity in the dilute solution
region and contains ideal solutions and regular solutions as special cases.
(3) It is applicable to N-ary systems and reduces to M-ary systems (M < N)
in a form-invariant manner. The ability of the function to describe data
for a real system is tested in a companion report (NASA TP-1930).

INTRODUCTION

The effective application of classical thermodynamics to complex physi-
cal problems demands two things. First, it requires an understanding of the
foundations of thermodynamics in order to appreciate both its capabilities
and its inherent limitations. Second, it demands convenient and accurate
mathematical representations of thermodynamic data in order to facilitate
their use in computations. On the one hand, theoretical studies of thermody-
namics are gradually and successfully exposing its foundations (ref. 1). On
the other hand, theoretical thermodynamic studies have had little real suc-
cess in guiding us to an accurate representation of thermodynamic data. The
many different functions which have been, and are being, used to represent
the composition dependence of thermodynamic properties are ample evidence of
this. Each of these many functions, some wholly empirical and others with a
theoretical base, has been used to give an adequate representation of data
only for a limited number of systems or for a restricted composition range.
None of them seems to have the flexibility to deal with a large variety of
systems over their entire composition range. It would be a great computa-
tional convenience to have available a relatively simple "universal" function
of composition variables which is capable of adequately representing the data
for all systems over the complete range of compositions and which can be used
for interpolation and extrapolation of the data. As nice as this would be,
we have no assurances either that such a function exists or, if it exists,
that we can find it. In fact, given the diversity of physical systems, it
is more likely that such a universal function cannot be found. However, it
does seem reasonable to expect that we can construct a function which is, in
this respect, an improvement over those already being used.

In this report I shall first briefly survey some of the composition
functions which have been used to represent thermodynamic data. Then I will
construct a new function which I propose for the representation of data.
Finally, I shall examine some of the properties of the class of solutions
which can be represented by this function. The application of the new
representation to the experimental data for a few different systems is dis-
cussed in a companion report (ref. 2).

In making a survey of the functions which have been used for the compo-
sition dependence of thermodynamic properties one quickly realizes two
things. First, most of the functions tend to be expressed in terms of poly-
nomials; second, by far the greatest variety of functions has been applied
to binary systems, with ternary systems being in a distinct second place.
This is a natural consequence of the need to deal with the idiosyncrasies of
actual data for a particular system and the fact that experimental data have



been pretty much confined to binary systems with a small sprinkling of tern-
ary systems. Marsh (ref. 3) has observed that many of the approximations to
the thermodynamic excess functions of binary systems can be regarded as
special cases of a rational function of two polynomials. Thus if aAG is
the excess Gibbs free energy per mole, T the absolute temperature, R the
universal gas constant, and xji,x2 mole fractions, then he considered

functions of the form

2, Aplxg - x))
6 _ k0 - = [n,m], By = 1 (1)
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Of course, for binary systems x1 + xp = 1 and equation (1) could be written
as a function of x7; or xp alone. Approximations of the type (1) can
clearly be regarded as Padé approximants (ref. 4) of numerator degree m and
denominator degree n for AG/XkXZRT’ and this gives us a convenient classi-
fication scheme for discussing the many expressions used for binary systems.
The approximants [0,m] and [n,0] have been discussed by Van Ness (ref. 5).
Otterstedt and Missen (ref. 6) refer to the approximant [0,m] as the general
Marqules representation and refer to approximants of the type [n,0] as the
general van Larr representation because [1,0] corresponds to the original van
Laar form (ref. 7). Myers and Scott (ref. 8) used the approximants [1,m],

m < 4, which might be regarded as modified Margules representations although
they could equally well be viewed as generalizations of the van Laar form.
Van Ness and coworkers suggested three equations which they regarded as mod-
ifications of the Margules form. Abbott and Van Ness (ref. 9) suggested the
forms [1,2] and [2,3], while Shatas, Abbott, and Van Ness (ref. 10) proposed
the form [3,4] - all are of the type [m - 1, m]. The first of these is a
special case of the functions used by Myers and Scott. Marsh expressed the
second of these as a ratio of two quadratics but, from the Abbott and Van
Ness version of the formula, it is clear that the numerator must be a cubic
polynomial and therefore Marsh's formulas relating the coefficients in equa-
tion (1) to those used by Abbott and Van Ness may be incorrect. Not only

can approximants of the type [n,0] and [1,m] be regarded as generalizations
of the van Laar form [1,0], but also there exists a third type which can be
viewed logically in the same way. These are the approximants [n, n - 1]
since they too contain [1,0] as a special case. These approximants also in-
clude as special cases the "g-equations” of Wohl (ref. 11) for binary sys-
tems. His (n + 1l)-suffix g-equation corresponds to the approximant [n, n - 1]
if the coefficients of the denominator polynomial are of the form

. /n n
Bj =Y <j)’ i=0,1, ..., where <j> is a binomial coefficient and the B
on the right is a parameter expressible in terms of Wohl's parameters q;

and q,. Thus B = (q1 - q2)/(ql + qz). Woh1 actually considered only the

cases n=1, 2, 3, 4. There is still another approximation of binary
properties which should be mentioned. It is the square root function of
Otterstedt and Missen (ref. 6) and is not of Padé€ approximant type.
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Otterstedt and Missen use ny =1 and Bandreth (ref. 12) uses nj = 2.

The functions which have been mentioned to this point are only appli-
cable to binary systems. If we wish to consider systems with N constitu-
ents (N-ary systems), then we must use other forms which, of course, will
apply to the binary forms for N = 2. The most obvious expression one could
write would be an analog to a truncated Taylor expansion, and it could be
thought of as a virial expansion.
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Benedict, Johnson, Solomon, and Rubin (ref. 13) used an equation of this
type; however, they restricted it to use only the quadratic, cubic, or
quartic terms. Not all of the coefficients in equation (3) are independent
since the coefficients must be symmetric in the indices. Also since AG s
an excess function, then for all i A+ A; + A;5 * Ay54 + ... = 0. Another
form which can also be interpreted as a truncated Tay1or series but with
different term groupings is

M n, n n
172 N
X1 X5 ees Xy (4)

x>

U SHD S >
= = A
n;=0 n,=0 ny=0 mnp - My

This form of representation was used by Pelton and Bale (ref. 14) for a
ternary system (N = 3). The coefficients in equation (4) must satisfy

M
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for excess functions. A variant of equation (3) which has been given consid-
erable attention is the approximation
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For the choice Aj; = 0 this becomes the N-ary version of Wohl's (ref. 11)
g-equations for ternary systems, which he wrote through quartic terms.
Another we]] known special case can be obtained from equation (5) if we
choose Aj, 8 , and all higher-order coeff1c1ents as zero. Supple-
0

menting these nditions with By =1 and Ay; = - §,5)/2, where
835 = 8355 s the Kronecker delta, gives the excess G1bbs 9ree energy for

G
A_T + ... (5)



the regular solutions of Hildebrand (ref. 15). If instead we pick Ay

w(l ~ &,:)B,B:/2, then we obtain an N-ary generalization of the binary
van Laar sdblutions, that is, those characterized by the approximant [1,0].
Perhaps the most extensive use of equation (5) has been by Pitzer and
coworkers (ref. 16), who applied it to aqueous electrolyte solutions. Their
excess function can be obtained from equation (5) by selecting A; =0
for all i, By = 0 for i £ 1, and By equal to the molecular we1ght of
water. The form of the first term in equation (5) also suggests an N-ary
analog of the Padé approximants for binary systems, that is, the ratio of
two functions of the kind shown in equation (3), although I know of no
instance where such an approximation has been attempted other than the two
special cases just mentioned.

Each of the functions mentioned to this point has been firmly rooted in

the polynomials. This is not true for the next example.

Zj) In <J§N:1 Aijxj> E <Z B /Z C1kx> (6)

This function was g1ven by Renon and Prausnitz (ref. 17), who actually
wrote it with Cyx = Ajk. It contains a number of funct1ons proposed
by others, as special cases. If B=0, it becomes the Wilson equation
(ref. 18) It becomes the equation of Heil and Prausnitz (ref. 19) for
B = 1 and Cjix = A5k and the NRTL (nonrandom, two Tiquid) equation
of Renon and Prausnitz Zref. 17) for A =0 and B = 1.

A final illustration of the kinds of functions which have been used to
represent the composition dependence of thermodynamic data is one which
might be called the "bootstrap" representation. It is not as specific a
functional form as those I have already mentioned, and it could utilize any
one of them. Although this representation could be written for an N-ary
system, the notation becomes complex and so I shall write it only for a
ternary system.

3%
n

AG(xl,xz,x3) = AGlZ(Xl’XZ) + AG13(X1,X3) + AG23(X2,X3) + A6123(x1,x2,x3) (7)

In this expression aGjj(xj,xj) are any suitable binary functions and
AG123(X1,X9 x3) is a ternary unction. I call this a "bootstrap" repre-
sentation Because it is possible, but not necessary, to determine the coef-
ficients in the binary functions from binary data alone and subsequently the
coefficients in the ternary function only from those ternary data for which

;7 #0 for all i. Shatas, Abbott, and Van Ness (ref. 10) used this kind of
representat1on For two of the binaries they chose a six-constant Margules
representation from [0,5], and for the third binary they selected the [3,4]
Padé approximant. The ternary function had the form of the cubic term in
equation (3) multiplied by (x XoX3). For a quaternary system equation (7)
would be replaced by the sum 0f a“quaternary function and all possible binary
and ternary combinations.

It would probably be helpful to point out, in general terms, some of the
difficulties connected with the use of the functions I have been discussing
before attempting to construct an alternative. I have already mentioned that
many of the functions lack the flexibility to handle the wide diversity of
behavior encountered in real systems. One is then continually faced with the
prospect of constructing new functions tailored to the system of interest or
else using available functions in a piecewise manner as was done for alcohol-
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chloromethane binaries by Moelwyn-Hughes and Missen (ref. 20) and Paraskevo-
poulos and Missen (ref. 21). For most of these binary systems they found it
necessary to use the approximant [0,2] for ]n(AG/xlszT) in the dilute alco-

hol region and a three-constant Margules form elsewhere. For the binary
methanol - carbon tetrachloride they used [0,2] in the dilute alcohol region
and [0,1] elsewhere as approximations for 1n(AG/x1x2RT). Such piecewise

fitting is a nuisance because one must ensure the continuity of the function
and its first derivatives at the boundaries of the segments. The lack of a
"universal® function is particularly disconcerting if one is attempting a
Barker analysis (ref. 22) for the excess Gibbs free energy from vapor pres-—
sure data because one must make a commitment to a function in advance. The
results are, to some extent, dependent on the function and its flexibility.
A second source of difficulty is the fact that some of the functions I have
mentioned are nonlinear in the parameters. This gives a person two options
and neither is completely satisfactory. One can preselect some of the param-
eters as did Myers and Scott (ref. 8) and Pitzer (ref. 16) and so reduce the
equations to linear form by limiting their flexibility. Alternatively, one
can face the unpleasantness of nonlinear parameter estimation and the possi-
bility of nonunique solutions. A third problem arises because accurate ex-
perimental data become increasingly difficult to obtain as one approaches
the highly dilute solutions. But since the approximating equations are gen-
erally unconstrained, they supply no guidance on the shape of the function
in this region. It would be better if the function could be so constructed
that it supplied some help in dealing with the dilute solution. Pitzer
(ref. 16), for example, has done this in his work with aqueous electrolyte
solutions by relying on Debye-Huckel theory as a guide. The final problem
which 1 wish to mention is the possibility of introducing undesirable
singularities into AG or its derivatives. This is built into the
Otterstedt-Missen (ref. 6) formula and can arise in the functions with non-
linear parameters by an inappropriate choice of parameters. The Otterstedt-

Missen function (2) with ny = 1 produces an xl_ll2 singularity in the
excess chemical potential for species 1 which dominates the 1n X1 singular-

ity from the ideal portion of the Gibbs free energy.

In my opinion a suitable function for the representation of the compo-
sition dependence of thermodynamic properties should exhibit six desirable
features: (1) It should have a form directly applicable to N-ary systems.
(2) It should reduce simply and obviously to lower order subsystems in a
form-invariant manner. That is, the function for an M-ary system, M < N,
should have a form identical to that for an N-ary system. (3) It should
contain ideal behavior as a special case because ideal behavior is often a
good first approximation to real behavior. (4) Its behavior in very dilute
solutions should be constrained to reflect the known behavior of these solu-
tions. (5) Its parameters should appear linearly. Finally, (6) it should

have sufficient flexibility to represent even difficult systems reasonably
well.

DEFINITION OF A CLASS OF NONIDEAL SOLUTIONS
My desire to include ideal behavior as an integral part of the function
rather than an add-on means that I must work with a thermodynamic potential

rather than an excess function. Generally speaking, the most convenient
experimental thermodynamic variables, other than composition variables, are
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the intensive ones. These are the temperature and pressure in the case of a
fluid. Consequently it is natural to work with the thermodynamic potential
for which the moles of each constituent are the only extensive variables:
the Gibbs free energy. In the following calculations only the composition
variables will be written explicitly; the intensive variables will be sup-
pressed. It should be kept in mind that all parameters are to be regarded _
as functions of the intensive variables. I shall begin by introducing nota-
tion and by obtaining some results which will be useful subsequently.

Consider a system of N constituents and let nj, i=1, 2, ...,
represent the moles of species i per unit mass. The Gibbs free energy per
unit mass g is then a homogeneous function of degree 1 in the nj.

g(xni) = Xg("i) (8)
By definition the chemical potential for the ith species wuj s
My = ”1(nj) = ag/ani (9)

and by Euler's theorem for homogeneous functions it satisfies

N
= 21 u.N. (10)
1=

It is a trivial consequence of equation (8) and the chain rule for differen-
tiation that the chemical potential is a homogeneous function of degree zero
in nj. For a independent of nj

A Eg("i)/ank] = [}g(xni)/ank]

_i [ag P /a(xnj)] [a(xnj)/ank]

kuk(ni)

é? Eg An Y/ a(an, ﬂ 8 5

Eg(xn)/a(xnkﬂ = xuk(xni)

Hence we conclude that

me(ng) = w (an,) (11)

and then from Euler's theorem and auk/anj = azg/anj ank = auj/ank we obtain

N

2]

n.a 3.=% . . =
; u/ n; 4 N auJ/ank 0 (12)



The second equality is known as the Gibbs-Duhem equation. We now define the
total moles per unit mass n and the mole fractions «xj.

>
n = n.
.=1

=1
(13)

X; = ni/n
The choice A = n~! in equations (8) and (11) immediately shows that the
chemical potential and the Gibbs free energy per mole G can be regarded as
functions of the mole fractions.

-1

G = ng(n;) = g(n;/n)

N
g(x1) = G(Xi) = J=21 ijj (14)

uyp = “k(ni) = l-lk(nl'/n) = “k(xi)

The last equality in the first member of equation (14) comes directly from
equation (10). In principle, one can conclude from equation (14) that G(x;)
and “k(xi) are homogeneous of degree 1 and 0, respectively, in the mole
fractions because g{n;) and up(nj) are such functions with respect to the
moles. In practice these restrictions are both unnecessary and unwise be-
cause they would force us to write unnecessarily complex functions. This is

N
a direct consequence of the fact that the mole fractions satisfy 2, x, = l.
consider as an example the simple function =1 9

N N
n, géa Ny = X; ;E% Xy = X;

Although the first two members are clearly homogeneous of degree 0, the last
member is just as clearly homogeneous of degree 1. Over the domain of

N
definition 2: Xp = 1, xj > 0, the last two members have the same value, but
k=1 o

the values differ if extended outside this domain. The identity & X, = 1
can be used to interconvert mole fraction dependent functions which are homo-
geneous functions of any degree and nonhomogeneous functions within the do-
main of interest to thermodynamics, and so I shall disregard the homogeneous
conditions. Because of equation (14) we can now express derivatives with re-
spect to nj in terms of derivatives with respect to xj. From equation (13)
we find that

axi/an. =

i - xi)/n (15)

61',]'

If we apply this and the chain rule for differentiation to equation (14), we
obtain



N
aDﬁ(
agi _ 21 X, 3_8_+ 33_ 6(x;) = (1+ £,)6(x,)
R=

r (16)

N

ou
k -1[ 3 3 _ -1
N D Y ) u(g) = O (xg)
J J =1 J

where @ 1is a differentiation operator. The second member of equation
(16), when combined with the second equality in equation (12), gives the
G ibbs-Duhem equation written in mole fractions.

N o . N au N N By
P DR TR S > ok
J ank J axk [} J ax
J:]_ J:l 2/=1 J=1 A
N N ;
-3 Zx.r= (17)
=1

j=1

We can now begin the actual construction of a function to represent the
Gibbs free energy. Suppose we consider a system of N nonreacting species
labeled by Latin indices 1, j, k, ... =1, 2, ..., N which can form two or
more coexisting phases labeled by Greek indices from the first portion of
the alphabet «, 8, ... =1, 2, ... The condition for phase equilibrium is

simply the system of equations

55) - +165) 19

Remember that we are suppressing the writing of the intensive thermodynamic
variables which label the state. Let k be a fixed index and examine the
behavior of dilute solutions in the vicinity of the point xj = sk, that
is, solutions in which species k 1is dominant and all species j £ k are
trace species. Then it is an experimental fact, known as Raoult's law, that
the mole fraction of a trace species in one phase is proportional to its mole
fraction in some other phase, assuming that we are sufficiently close to

Xj = 8ik. Of course, the proportionality depends on the choice of trace
species, dominant species, and the pair of phases being considered.

o —aBB

X = KJk ; J+ k, as x, » 8k

j

A natural generalization of this is the equation



o B

qj qj
Q;) = K‘;E(xg) J#kyas x> 8y (19)

Kgi , q , and q? will

become concentration dependent. In the thermodynamics of mu1t1phase systems

one usually assumes that the phases are noninteracting in the sense that the

Gibbs free energy of the whole system is the sum of the Gibbs free energies
aB

for each phase., This implies that one can factor .Kjk into contributions

As the concentrations of the trace species increase,

from each phase. Thus we write the factorization
B _ yB a
K‘Sﬁk = K3/Kik (20)

This factorization is not unique because we can put a common factor in the
numerator and denominator on the right side and not affect the left side of
equation (20). Let e be any quantity with dimensions of energy per
mole which depends on %he choice of dominant and trace species but not
phase. Then by taking the logarithm of equation (19) and combining it with
equations (18) and (20), we obtain

¢ _ e (¢ %+ o L 8 B+ 1nkh
Y eJk@J n xJ 1nKJk) M Jk(q In xJ n ik

J#+ k, as Xi > 84y (21)
From equation (21) it is clear that we will obtain the condition (19) from
the solution to the equations (18) if we equate both sides of equation (21)
to a quanity fjk which depends only on the choice of dominant and trace
species.

Qa a a a . -
My o= fjk + €k In Kjk + €595 In X5 j# k, as X5 > 84

This form for the chemical potential can also be extended to the dominant spe-
cies because as X5 * sik’ In X * 0 and the 1In xﬁ term does not contribute.
Hence we tentatively write the chemical potential for all species in the form

where the phase index has now been suppressed and rjk and ejx may be
composition dependent.

Equation (22) is a nice simple form for the chemical potential as
Xj + 8k and is consistent with the generalization (19) of Raoult's law.
But this is not sufficient. The chemical potential must also be the gradient
of the Gibbs free energy, that is, there must exist a function g which
generates equation (22) by differentiation as shown in equation (9). But
this can only happen if the chemical potential satisfies the integrability
conditions auj/ang = aug/anj (see, e.g., theorem III.8, p. 1600, ref. 1la).



If we temporarily treat uj and e as constants and apply the second
member of equation (16) to %22), we Obtain

Thus we find that
a -+ au .
J i) _ _
n(——ani - ““anj>‘ ik~ €3k (23)

and the form (22) does not satisfy the integrability conditions even with

uik and eik as constants because the trace species i and j could be-
hgve quite %1fferent1y near the point xg, = 6§¢¢ and therefore we do not wish
to assume that e, and eqj¢ are the same. This forces us to look for the
simplest modification of equation (22) which does satisfy the integrability
conditions when ujk and ejk are independent of composition. Observe that

N

3

N3 xel e -3 xe
ani = L ek ik a1 [

and thus
n (== - 2 ZN:x - - (24

an. _ an. 22k T %ik T fjk )

i i/ e=1

Equations (23) and (24) show that if a linear combination of the ez s

subtracted from the right side of equation (22), a function results which

satisfies the integrability conditions. Any quantity independent of mole

fractions could be added without affecting integrability and, since adding
ejk will give a simpler function for the Gibbs free energy, we write

N
By = Mg Toege e Inoxg - Ega X4 ok as x; > 84 (25)

From this function the Gibbs free energy per mole in the vicinity of

Xi = 6'5 G(k), can be obtained by integrating the first member of equa-
tion (i 5 or more simply by using the last equality in the first member of
equation (14). Its validity can be checked by differentiation.

N
G(k) = ;E% ("jk + ejk n xj)xj as  x; = Gik (26)

Finally, to obtain a function which is suitable away from x; = &4k, I shall
merely superpose the G(k) weighted by the mole fractions.

N N N
G =2, G(k)x, = 2, (wsp * ey In xL)X0X (27

A
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The simple function (27), with njg and independent of composi-
tion but functions of the intensive variables, sﬂou1d represent the behavior
of an N-ary system for the dilute solution regions in the vicinity of each of
the N points x5 = 65k, k =1, 2, ..., N. Consequently it is probable that
it will also do quite well in other parts of the domain of the function.
However, it is still possible to improve its flexibility and enhance its
capabi]ity for dealing with concentrated solutions without diminishing its
capabilities in the dilute solution regions of the domain. This can be ac-
complished by the simple expedient of returning the parameters wjx and ejk
in equation (27) to composition dependent functions. We must then face the
problem of making an explicit choice for the functions and

Clearly, one might concoct many potentially suitable func€1ons on t%e basis
of some selected criteria or personal whim. One can, in a sense, avoid mak-
ing an explicit choice and permit the thermodynamic system to make the
selection by working with an expansion of wj and as a linear com-
bination of a suitable finite basis set of compos1t1on ﬁependent functions.
The expansion parameters can then be determined from data. That is the ap-
proach I shall pursue here. I shall only demand that the character of the
expansion permit the functions wjx and ejk to approach constant values

in the dilute solution regions so"that convéntional Raoult's law behavior can
be accommodated there, Probab1y a number of basis sets exist that one might
wish to consider. But there is one which comes to mind first because it
offers both simplicity and elegance and at the same time is consistent with
the six criteria enunciated at the beginning of this section: the set of N
elementary symmetr1% §unct1ons of the N variables xj. The elementary sym-
metric functions (x43 are most conveniently defined by their genera-
ting function g(z, Xis N).

N N (k) K
9(z; x;, N) = TT (1 + x,2) = :2)0 o (x53 N)z (28)

The functions ¢(l) can be obtained from G by differentiations with
respect to z,

ooy =2 g

N 29
A ) (29)

i z=0
Clearly ¢(0) =1 s trivial and of no interest. For N = 3 the nontrivial
functions are

(L), . h
o T (x53 3) = xg * xp *+oxg

2 . -

( )(Xi; 3) = X)Xy ¥ X1X3 * XoXq > (30)
(3
¢( )(Xi; 3) = X{XpX3 )

The elementary symmetric functions of the mole fractions have some con-
venient properties. Suppose we consider an M-ary subsystem of the N-ary

11



system. Then only M of the mole fractions are nonzer05 and it is obvious
from the definition of the generating function that w( (x ;s N) =

for M< & < N. Furthermore for 1< &2 <M the ¢( )(x ; N) are identical
with the corresponding elementary symmetric functions formed from the M
nonzero mole fractions. This can easily be verified from equation (28) or
from equation (30) for the special case N =3 by setting x3 to zer?i

for example. A generating function for the partial derivatives of ) can
be obtained by differentiating the generating function (28) with respect to the

mole fractions.

aéf(z, X5 N ) X33 N)
zz: z — (31)
k=0
But
3 In % (z; X3» N) . 5
X, {1+ X, z)

and therefore we obtain a very simpie result.

39(z; x., N)  z9(z; x., N)
o ! = ! =z TIT (1+ xkz = 729 (z; X5 i#e, N-1)
% (1 + xlz) k#2
(32)

If we apply the Liebnitz formula for the differentiation of a product wuv in
the form

N

(n) _ <”> (k) (n-k)
(uv) Z y u v

k=0
to the function z%, we obtain
299 - o) 4 g
But then

(3)(x.. ;
89 "/ (x53 N) J

ax

L =0

L k. i N-1)
=TT T Y0 X T4 N

z=0

and so we have shown that

12



() (y .
3 (x:3 N) .
N) = _"’_572_1__= L Rl COUEE JF RPN I (33)

(J)(X

A11 higher derivatives can be obtained by further differentiation of equa-
tion (33). The validity of equation (33) can be verified for N = 3 by
direct differentiation of equation (30).

Now that the properties of the basis set have been established, it is
simple to write the final form for the function which will be used to repre-
sent the Gibbs free energy in an N-ary system. We write

E}; w0 (x5 )

N
Ejk= EJk(’H) _ ; ( ) ( )(X )

Mk = “jk(xi)
(34)

where ugt) and egi) are independent of mole fractions. Substitution of

this expansion into equation (27) gives the appropriate function for the
Gibbs free energy in expanded form.

N
G - o %) (x Z Z ( ,(]ﬁ) in xJ-) X Xk

= J= k=1

=

=

N
¥ oM meM (x,) (35)
ﬂ,:]. 1 1

This representation for the Gibbs free energy defines a new class of non-
ideal solutions whose properties will be studied for the balance of the
report. The structure of equation (35) shows that only the symmetric part

of ugi) can contribute to G, and so without loss in generality we take

This property does not apply to egt) because the 1In X3 term introduces

asymmetry, If the full expansion (35) is truncated after the first L
elementary symmetric functions, then the expansion will be called an expan-
sion of degree, L. The number of independent parameters for each & is

N(N + 1)/2 + NG = N(3N + 1)/2, and hence for an expansion of degree L there
are LN{3N + 1)/2 1independent parameters.

The properties of the elementary symmetric functions allow a simple in-
terpretation of the terms in the Gibbs free energy expa? }on (35), which
correspond to different values of &. The functions can be regarded
as weighting functions for different regions of the doma1n of

13



N
definition 0 < x; < 1, El x, = 1. Since cp(l) = % x; =1, the function
k= i

¢(1) is a constant function over the domain and thus the 2 =1 term
samp]es all points of an N-ary system with equal weight. The function

2: X3 vanishes at the N points xi(k) = 851 k =1,2, ..., N,
i<
and so the ¢ =2 term samples all points with the exception ?g those N
points corresponding to the unary subsystems. The function vanishes
for all unary and binary subsystems but samples all other points. Similarly
vanishes for all unary, binary, and ternary subsystems. In general,
¢(2)(xi; N) s zero for all M-ary subsystems for which M < &. This
situation can be visualized by the description that, as & increases, the
terms progressively sample more and more of the *"interior" and less and less
of the "boundary" of an N-ary system. This description is especially appro-
priate when appliied to the graphic portrayal of ternary systems by equilat-
eral triangular diagrams where the vertices are the unary subsystems, the
sides are the binary subsystems, and the interior is the portion of the ter-
nary system for which (x5 # 0, i = 1,2,3).
There still remains the task of calcuiating the chemical potentials for
the Gibbs free energy function (35) by using the last equality in the first
member of equation (16). Suppose we define

SRR (37)

were the differentiation operator &@; is defined in equation (16). Then
from the last equality in equation (35) we find

N N
u1=§{ » )<z)+e()[<m) - JN)]}

But since ¢(l)is homogeneous of degree &, we know that

N
Z: (2) = z¢(£) and thus

— K%k

N

' (2) ()} ( . + 2) ., .
uy o= st=:1 l:(Jil - 26 L) @ Z)(xj, N) G(l)cpg )(xj, N)] (38)
The 2 =1 term can be simplified because ¢(1) = ﬁ:_xj =1 and

J:
a¢(1)/3x1 =1,
Thus we can write
N

ool - ) g ] o

14



By using the definition of ugl) (eq. (37)) and the symmetry property
(eq. (36)) of the parameters ugt) it is a simple calculation to establish
an explicit formula for ugl).

N
R PR R

N
- E El[(ﬂ-) + e(k) (1 + 1n Xj)] X Xk

j=1
N Ea), (2) g, . ]
= EE& 2u3) el | In x.) + e s’ Tnoxyx
N N
SRS M MU (40)

. . . . %) .
It is sometimes convenient to have an expression for ug ) in which terms are
grouped by parameter.

N N (1)
= J=E]_ k2=:1 XJ.(ZG_ik - Xk)ujk

(%)
+ Ex 8oyt xksij - xjxk)_1n X5 + xk(sij - xj)]ejk (41)

At first glance the result given by equations (39) and (41) is a bit discon-
certing for it seems to imply that we can extract all parameters in the Gibbs
free energy by fitting one of the M alone. This seems to contradict the
fact that differentiation of a function results in a loss of information
about the function because in the differentiation we discard the constant of
integration. That, in fact, is also the case here. To see this most simply,
we need only define functions wjj(xk) by

u'ij(xk) = T;'ij(xk) + (T'l-i + nj)/2

and the nyp are arbitrary and independent of composition. If this is sub-
stituted into the expression for the Gibbs free energy (eq. (27)), we find

NN NN N
.t oe. IXLX, = I . VX . X
_Zl E,l R L ESH JZ=:1 El(qu SETPRLEP I MR

~ j=1

If uy is the chemical potential calculated from the Mk and E} is the

chemical potential calculated from the ;ﬁk’ then the two are obviously re-
Tated by the expression

15



My = Hy TNy
From this it follows that there are N - m arbitrary parameters in the Gibbs
free energy function (eq. (27) or (35)) if we have data on only m chemical

potentials.
It is occasionally of some interest to have an expression for the sec-

ond derivatives of the Gibbs free energy. An appropriate formula for the
calculation of the second derivatives from G can be obtained easily from

equation (16).

2

3 g
n —=—= g u. =
ank ani k™ i

ol + 0.)G (42)
The left side is manifestly symmetric, but the symmetry of the right side is
not obvious. To demonstrate the symmetry in a simple way, it is convenient
to use the commutation properties of the operators &k. One can evaluate
the commutators of the operators from the definition of the operators by a
straightforward computation.

(43)

= -2 2 _ -
Lo 012 60, - 0,0 =50 5.~ % %

Symmetry can now be simply demonstrated by combining equations (42) and (43).

2 2
99 3 g _ _
n <ank ani - an, ank>“ l:ﬂk(1 * 01') 01'(1 * ﬁk)]el

= (0k - O [0k,a].])e = 0

The actual calculation of the second derivative by means of the first equal-
ity in equation (42) can be somewhat simplified by taking advantage of some
properties of the operators &. When & is applied to a product of
functions, it has a simple behavior.

O (w) =ud v+ vou (44)

() (2) (2)

When it acts on the functions G , ¢/, and 05 ', we obtain

0,6() (1) _gls) A

Op ) = o) - aol®) 4 (45)
2 (&)

‘l¢gl) = a:k¢axi - (2 - 1)¢(£) )
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The first of these three results is an immediate consequence of equation (37),
and the remaining two follow from the definition of the operator and the fact

that ¢(£) is homogeneous of degree &. The effect of 0& on ugz) can

()

be calculated by expressing t7kugl) in terms of derivatives of G

N
2.(2)
(2) _ (¢) _ 3°G‘\"/ 26(*) _ 3“6
0k“1’ - 0k(l * 01')G = 39Xy, ax z Xj axk IX . 3X; 3Xj
j=1 J

(2)
:E: :E: X5 *m 32“’75;

j=1 m=l

The evaluation of the right side of this expression gives the final formula
which is required for the evaluation of the second derivatives of g.

R R IR IR N
N
> XJ[z(gkg) ) SN

The second derivatives are obtained by combining equations (42), (44), and
(45) with the expression for uj given in equation (39).

3 (1) . N L (%) (s (%)
nﬁ—;: O} ) EZ {q) Q)pkugl) _ Gﬁz) u ><W ) ot >

2 (%)
’ [gxt ax; (o * 1)<P;(<l) - (2 - 1)“’9) t (e l)q’(l)]G(l)} (47)

The function I have constructed to describe the composition dependence
of the Gibbs free energy for a class of nonideal solutions contains an impor-
tant special case. Suppose that we make a special choice for the functions

Mk and €5k which appear in equation (27).
. =~. = ~.+~
Mik = Hik (uJ w2 (48)
ejk = ejk = €
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- ﬁ& - - N -
= . + . ] . . = . + . . 4
G = (qu ek In xJ)xek éZ% (uJ e 1In xJ)xJ (49)

and if ¢ and the ;. are taken to be 1ndependent of compos1t1on then G

becomes the ideal Gibbs free energy if e = RT. The function G s useful
for defining a relative Gibbs free energy funct1on which has the same form
as G itself.

- - N N ~ - N

AG =G -G = §:1 kz=:l (Aujk + A€ 5 n xJ.)xJ.xk

SRR S (R FPRRE S RO Y (50)
IJJk = qu qu = qu UJ' uk = ~ qu @ i r

Naturally AG becomes identical to the excess Gibbs free energy aG if
~ *
= RT and My = M where u; are the chemical potentials of the pure con-

stituents, that is, the Gibbs free energies per mole. This means that the
expression for the derivatives of the Gibbs free energy are immediately
applicable to the excess Gibbs free energy merely by replacing M3k and € jk

with A;jk and Azjk with the understanding that

(=) s upre L=l
iRl

= i
A;§ﬁ) = e§t) - RT

The special choice Au(i) =0 for 2 41 and A;§i) = 0 shows that

Hildebrand's regular so]utions are special cases of the class of solutions
considered here,

GIBBS FREE ENERGY IN A SUBSPACE

I have already briefly mentioned M-ary subsystems of an N-ary system
N) in the preceding section. This is nothing more than a special case

M
f another more general notion, that of a subspace, which also is relevant to

M <
of an
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thermodynamics. The simplest example is an adqueous sodium chloride solution,
which is a ternary system with constituents H»0, Na", and C1. The solution
is formed by dissolving NaCl in water and therefore the moles of Na* and C1-
are always equal. This implies that there are not three, but only two inde-
pendent composition variables despite the fact that we have a ternary system.
The independent variables are clearly the moles of water and the moles of
sodium chloride. The form of the Gibbs free energy written in terms of the
independent variables will differ from the form written in terms of variables
which are not all independent. In this section I shall examine the form of
the Gibbs free energy in a subspace of an N-ary system.

To carry out this task expeditiously, I must introduce some helpful
notation. Latin indices will continue to use the range 1, 2, ..., N, while
Greek indices from the last part of the alphabet (p, v, o, 7, ...) will use
the range 1, 2, ..., M < N. For thermodynamic purposes an M-dimensional sub-
space can be defined by the equations

(51)

where, of course, n, represents the independent composition variables of
the subspace in moles per unit mass and the second member of equation (51)
is the requirement that the functions nj(ny;) be homogeneous of degree 1.
The functions nj(n,) always turn out to be linear functions in actual
situations, but this specialization does not lead to any mathematical sim
plification, and so I shall use the more general case. Suppose we define
"stoichiometric coefficients" vi, by

an

|_J-

Vio T v'ic(n'c) =

>0 (52)

[++4

n

Q

where v, would be a constant in the usual case of Tinear functions. We
can now apply Euler's theorem to equation (51), as we did before in the case
of the Gibbs free energy, to obtain

(53)
. (n)

Vi (Anr) = Vio‘"e

1o

The total moles n and mole fractions X of the independent variables are
defined analogously to equation (13).

R M
fe 2,

= (54)
X, = nT/n
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If we define

N
v_ = 1_2_:1 v, >0 : (55)

then we have simple relationships between the two kinds of total moles and
mole fractions.

We are now in a position to define the Gibbs free energy functions and
the chemical potentials in the subspace.

g =3(n) = gln;(n )]
6 = A5, r (57)
o D

The function g is homogeneous of degree 1 in the n, because g is homo-
geneous of degree 1 in the n; and the n; are homogeneous of degree 1 in
the ng. It is simple to establish the reﬁationship between G and G and

between u, and wuj.

G = n_lg[n1(n0)](n/n) = Gn/n
N an N (58)
3ag i
Mo = :Z: (55;)(%ﬁ_> z% HiVig
i i o j=

A complete parallel exists between the N-ary equations and those of the sub-
space. The counterparts of equations (14), (16), (43), and (44) are
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M N
G(x )= 2 MoX
o=1
M
3 3 a ;
ne= (U= 2 xem T B0 = 0B
‘t=1 ¢
v > (59)
A auc 9 3 G
n W - ﬁ: - z]_ e ﬁ: uo(xp) = 0\)“0()(0) = 0\’(1 * 0°)G(x°)
T=
[00,’ 01-] = 01— - 00
o (uv) = u oN*tvou
J

While the expressions given in equation (59) for wy; and sug/an, are
correct, they are not necessarily the simplest ways to calculate these quan-
tities. It might be simpler to calculate uy; from the second equation in
(58) if one already has expressions for uj. A similar formula can easily be
found to relate the derivatives aug/8n; to auilanj merely by differentia-
ting the second equation in (58).

Buo - : Bui ! av'ic:
an. - z Z VitYie . Z i %n (60)

Only the first part of equation (60) will contribute in actual problems be-
cause, as I pointed out before, 3vj,/an; = 0 in the usual case. The Gibbs-

M
Duhem equation for the subspace, 2: n, auo/anT = 0, follows from equations
o=1

(60) and (53) and the Gibbs-Duhem equation (12).
From equations (35) and (58) it may be seen that G can be written as

N

6= 2 o5 g™ (61)
L=
where
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~ M M
6(*) = Al > X [%(2)'+ > (2 Tn x }x X
=1 1=1 oT j=1 Jt Jo J T
(1) . : ) _ (%) - (62)
Hor ~ i=1 kz=:1 vjovk'rujk 1o
L)
egr) - k§1 \’kregi) /

Similarly the combination of equations (39) and (58) gives an expression for
Mg

N . . h
. = uf,l) 3 {ég’“) _ vczﬁn'la("“)> ol Yixi(x)s N+ ﬁn‘le(”q;g”‘)}

=2
N
uc(jz) _ % “gg)"ic r (63)
N
‘Pt(JE) = 'El ‘ng)vio J

To obtain an explicit expression for ugz)’ we can use equation (58) with

either the first equality in (40) or (41). I shall only give the one which
comes from equation (41) since it gives the most compact form directly.

u(m) = An~1x (26 - anly x ) u(l)
o 0 ot ot pT

MM .
=y X AL (x s *+xs -l xx ) w(#)
p OoT T gp o p’ oT

o1 1 1 g 1

N M
+ 2: > l} x. In x; + ﬁn—l x_(vig = %39 ) (1 + In X-)]€§f) (64)

The second equality is obtained from the first by using the symmetry of the
ugi) (eq. (62)). The number of independent parameters in G is easily cal-
culated since for each & we have M(M + 1)/2 independent ugf) and at most
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MN independent egi) and hence for L terms the total is LM(M + 1 + 2N)/2.
The number of independent egf) parameters might be less than MN for each

% for special choices of the stoichiometric coefficients. Suppose that for
a given 1 and J we have Vig = Vi for all o. Then Xj = Xj and
therefore for all = J

M M
X_ 3;% viXg I xs = x_ 25& ¥io%e Tn X;

and therefore the functions multiplying egi) and egi) in G

(%)

it

are equal,

which precludes the separate determination of e and egi). In such a

case, for all t and &, only the combination (egi) + egi)) can be deter-
mined by fitting data, and one may impose arbitrary subsidiary conditions to
determine separately the individual coefficients.

One can introduce a relative Gibbs free energy in the subspace in much
the same way as was done for an N-ary system by equation (50).

-~ ~_1 M M " N . M
AG = nn ég% Eéi A ;Ei 8E Y 5g Tn X5 ) %% s
N
~ A PS ~ al L 2
AU L Mg~ (uCI + uT)/2 = ‘ AR -r)q’( )[X](Xp)s N] (55)
. ~ a(2) (2)
pes Eeg - €= EE& 2e5 e [x1(xp), NJ )

The relative Gibbs free energy Aé becomes an excess Gibbs free energy if
€ = RT and ﬁo = u;, where “3 are the Gibbs free energies per mole for

the independent species. I should point out that AﬁcT and ASjT are not

the same as the transformed versions of Au., and ae., , which are given in
- Jk Jk

equation (66).

- N N - - - W

Bugr = Z Z VigVkttH ik T VYot T (“ovr * urvo)lz

J=1 k=1

~ N ~ ~
Ae:\].‘r z kz=:1 vaAEJk = €4, 7 €V > (66)
~ N ~
o= ;é% Vighs )
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The differences between AEUT, ASjT and Au__, AejT can be seen by
comparing the last two members of equation (65) with the first two members of
equation (66),

The choice of independent composition variables is not unique and often-
times one choice might be more convenient than another. Suppose we wished to
use the variables ny; in place of ng. Then for thermodynamic purposes the
transformation between the two sets of variables must satisfy

where J 1is the Jacobian of the transformation. It is an immediate conse-
guence of the chain rule for differentiation that

iﬁ-=-— = ZM: v, T
a-ﬁo - o b | ip po
LIl =y = i% w T

aﬁ; @ e=1 P PO

and obviously
M M
—(%) _ (2)
Mor 7 El El Mo TpchA'r

with similar transformation rules for other quantities. I shall not pursue
this farther except to mention that the T,; will generally be constants.

LIMITING BEHAVIOR

Thermodynamicists are often preoccupied with the limiting behavior of
thermodynamic properties in dilute solutions where the concentration of one
species dominates that of all other species. This naturally raises the
question of the limiting behavior of the Gibbs free energy function and its
derivatives for the class of solutions discussed in the preceding section.
For this reason I shall examine the dilute solution behavior of these solu-
tions and shall obtain an interpretation of some of the parameters as a
byproduct of the analysis. The limiting process will be carried out for
constant values of all intensive parameters, such as temperature and pres-
sure for fluids, which characterize the thermodynamic state. It should be
kept in mind that although this limiting process always makes mathematical
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sense, it might not always be physically meaningful. For example, suppose
that we ask for the limiting behavior of an aqueous sodium chloride solution
as the concentration of NaCl goes to zero at some given temperature and a
pressure less than the vapor pressure of pure liquid water at that tempera-
ture. But pure liquid water is inaccessible from the aqueous solution phase
under the specified conditions, and the Timiting process is not physically
meaningful. Similarly the 1imiting process is not physically meaningful in
the pure sodium chloride 1imit at ordinary temperatures and pressures
because NaC1 has a limited solubility in water. The formulas which follow
all presuppose that the pure state xj = xj(p) = Sip> where p 1is a fixed
index, is physically accessible from the phase under consideration and,
strictly speaking, they are physically meaningless if it is not.

To simplify the calculation of the limiting values of the Gibbs free
energy and its derivatives, it will be helpful to know some auxiliary
limiting values.

\
limx® Inx=0 for all a
x+1
1im x2 In x = 0 a>ao
x+0
p
X5 = 83 > (67)
. [
Tim ¢ ¢( )(Xi; N) = 81,
X.>8.
i Tip
(1)
39 =89, * (1 ka)GZz
x|
- J

The second of these five limiting values comes from a simple application of
L'Hospital's rule and shows that 1n x has a weak singularity indeed in the
Timit x + 0. Thf fourth and fifth values make explicit use of specific
properties of ¢( ) and ® ), namely,

~
N
cp(l) = E X, =1
i=1 !
(2)
) = X.X.
i<g 'Y
> (68)
2o(1) _
axk
(2)
3¢ = E: X. =1 X
e kI k)
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i

and that ¢( ) is of degree £ in the mole fractions. We now use the
1imiting behavior given in equation (67) in evaluating the limiting behavior
of G as given in equation (35).

g(t) _ (1) (69)

= 1im G = 1lim.
DP

*
p - >

X; s1p X; sip
Hence we have the important conclusion that when a pure species is accessible
from a phase, the corresponding diagonal parameter must be chosen as the

(2)

Gibbs free energy of the pure species. From the expression (41) for My
it is easy to see that

N N N
Tim u(l)-— >, e(z)x In x.|= Tim - e(l)x §:: In Xs
X +§ i i1 ik 7k i X 1 kel Jk "k J
m ~mp B m “mp J= B
N N
2)
> Z’Es.(Zs - yp)u
u)]
" Sup(8ig ~ o5k
_ () (e) () (2)_ (1)
=wip T i’ T¥pp T Cip’T pp (70)
where, of course, in 2: k k n X, the term k = i vanishes in the Timit

as does the complete sum for i = p. Suppose we define

N N
Tim [11. -3 (%) k}=:1 egi)xk n x].i| (71)

u?(P) C

X +8
m - mp

then it follows from equation (39) that

Tim [ Z e ]n X + G(Z) (2)]

u:(p) =
XS
CLD ) ) (D) ) g g, (2)
= Wip T ¥pi T¥pp” T Eqp pp * (1= Siplunp (72)

and from this we see that for i=p

u;(P) é;) = uE

(73)
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The chemical potentials in a dilute solution have a simple form as can be
seen from equations (71) and (34).

N
uy = us(p) * E;% X N Xy as x5 > 85, (74)
If we compare this to the defining equation for the rational osmotic coef-
ficient (Kirkwood and Oppenheim, ref. 23, p. 164, eq. (11-31), and Pitzer
and Brewer, ref. 24, p. 321, eq. (22-22)), we see that the similarity of
form permits us to interpret the functions ejj as generalizations of the
rational osmotic coefficients.

The 1limiting behavior in a subspace is a bit more difficult to discuss
because we must now take into account the stoichiometric coefficients

Vs
and because we are now concerned with the behavior as x_ + x_ (w) = 8, ,10
where w 1is a fixed index, and not as xj » &;,. Instead of the re]a%ive1y
simple limiting values shown in equation 267) wB have
( X =6
T T™w
ﬁn_l = v
w
Xy = v‘iw/vm
- (R)ry o Ny = oo f®) .
x]llg * (0] (X_i, N) = Vw @ (V.ima N) (75)
P pw
(2)
o D N (e (0)
Xy = Vo ¢ (v'iw’ T4k N-1)
ol YN Lo IONR P!
L k=1

N
> vkmcp(“”(vjm, JEkN-1) = P 5N

where in equation (75) and for the remainder of this section the symbols v,

are to be interpreted as 1lim Vig The second and third parts of equatio?lc
X +§
P pw

(75) are a direct consequence of equation (56). The fourth part can be ob-
tained simply by looking at the 1limiting behavior of the generating function

Y(eq. (28)) and recalling that the ¢(“) are homogeneous of degree &, while
the fifth part comes from equation (33). The last part of equation (75) is a
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consequence of Euler's theorem applied to w(“). From the definition of 6(2)
given in the first member of equation (62) we see that

~ N
Tim G(z) = v_lﬁ(l) + 2 e(.g')v. In (vjm/vw):,

w ww
X *+§
p Pw

and so from equation (61)

~ N -
wr = lim G- Tim Y o(¥g(%)
©oox s X +8 =1
o] Pw o] pw

N N
= v_l > v—£¢(l)(vi ; N) u(l)'* 2. e(l)v- In(v; /v J (76)
w 2=1 w w ww j=1 JU) Jw JOJ w

and as a general rule “5 # uﬁi) although it could still be true in some

particular case. One very important special case for which it is true is

the one corresponding to an aqueous electrolyte solution in which water is
assumed to be nonionized and the index w labels water. Under these condi-
tions the stoichiometric coefficients for water satisfy Vig = 0 or vjw =1

and v, = 1. For these stoichiometric coefficients only "ii) survives on

the right side of equation (76). In general, from the nonnegativity condi-
tions (52) and (55), it is sufficient to require only that v, = 1.

ukh o= u(l) if v =1 (77)

ww w

The condition in equation (77) would not be satisfied if we took the ioniza-
tion of water into account.

Next I shall establish the Timiting form of the chemical potential g
in the vicinity of the point xp(w). The chemical potential u; only had
the logarithmic singularity 1n xj; however, p, can have a Togarithmic sin-
gularity for each i for which v;, = 0. Therefore, in contrast to equa-
tion (71), I shall define

- N
u_(w) = Tim l}:o - % D) X I xi]
pw

X+ i=1 1% k21
o]
NN M
SR IR RSl DD DI DR S SO MR T xi] (78)
xp-’spw =1 =1 =1

(2)

From the first expression in equation (64) for M, we have
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+$
XP pw

N
E:( 9,) 08(1.:))\,1. In(vy /v ))] (79)

where I have used notation analogous to that in equation (62).

If we use the expression for u, given in equation (63) and take advantage

of the fact that ¢(l) =1, then

a1 X N M (2)
- nn }; El g Vietit T]nxi

O

From this equation and (79) it immediately follows that

N
u:(w) - Rg V;L—Zcp(ﬂ-)(vim; N)[\,w <2u££) + ggi)> - vo <u((uz) + et(ﬁi))



and thjs result is considerably more complex than the corresponding formula
for wu. (p) given in equation (72). From equation (78) it follows that

N
© a -1
- + -»>
u = u_(w) * fin ;;% g; ioSieXe 1N X; as x  * 8 (81)
represents the limiting behavior of .

The expression (80) for uw(w) simplifies considerably for o = w. For
this case the second summation Oover & vanishes identically by virtue of the
last member of equation (75) and only the first summation over & survives.
From this we see immediately that

N
uo(w) = v;l z%-v;l¢(g)(v. : N)u(z) (82)
L=

Tw ww

Thus, in general, u:(w) + u* and from equations (82) and (76) we can obtain

an explicit expression for the difference

o) = 3 3 v M s e ) It ) (83)
Hp ~ Ht¥ = oy R | Vo ? iw’ ij vjm Y vjm Y
This formula can also be obtained directly from equation (8l) with o = w
and y* = 1lim u . It is clear from equation (83) that u:(w) and  p*
X +8

0 pPw
will be equal only under special circumstances. One such special case is the
condition V= 1, which implies that vjw/vm =0 orl for all j values,

(2)

but it could also be true under other circumstances since the €3y may be

positive or negative. The assumption v, = 1 also engenders a considerable

simplification in the expression for ( ), o £ w. Under these
circumstances

oV (v, , jE Kk N= 1)

(1)(\)jw9 J 3& k; N - 1)

I
(2]

N

=
B

=629'z:\)

itk 3¢

= 62£(vw - vkm)
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These results, when substituted into the formula (80) for u:(w), produce
the expression

N
=y = 9,(1) (1) (1) (1)
uo(m) - Zucw * o0 ~ Yo \Muw * Con T 1) - kgl Yke kw o # v, Yo = 1
(84)
where the sum over k contains only one nonzero term because v = 1. Of

course, if the stoichiometric coefficients Yo and Vg © £ ¥ are

orthogonal, as is generally the case, then the sum over k vanishes.
Thermodynamic properties of solutions are always reported relative to
reference values which, of course, may be chosen arbitrarily. Thus one would
express the chemical potentials for an N-ary system as ("i - ;1) or as
(u0 - ﬁc) in a subspace, where ;1 and ﬁo are independent of composition.
For the class of solutions described by the equations of this report one
might reasonably select My o= u:(p) and ﬁc = u:(w). Perhaps the most com-
monly used reference values, especially for electroliyte solutions, are the
so-called infinite dilution standard states. These standard states are
described, for example, by Kirkwood and Oppenheim (ref. 23). The use of
such standard states is predicated on the existence of certain limits in-
volving the chemical potentials themselves. The particular values of these

1imits are of no practical consequence, but their existence certainly is.
The 1imits in question are defined by

u?(p) = lim [u; - RT 1n x,] (85)
X Smp
0 . N
uo(w) = x1:l;1 m, - RT E Vi n (T*Zw Virm'r> (86)
P pw

where m;, are molalities relative to species w. The first of these is
Kirkwood and Oppenheim's equation (11-8), while the second is a combination
of their equations (12-3) and (12-7). The infinite dilution reference values

are u?(p) for an N-ary system and “Z’ ug(m) for ¢ # w in a subspace. Are

the infinite dilution values suitable as reference values? Only if the Tim-
its (85) and (86) exist. These limits, like all Timits, are experimentally
unobservable and their existence for real solutions must be taken as an arti-
cle of faith when one makes a decision to use them. Because the limits are
not experimentally measurable, their values for real solutions can only be
obtained by an extrapolation of data. But this makes the resulting values an
artifact of the extrapolation technique and hence they can be of no intrinsic
significance. MNonetheless, for the class of solutions defined by the equa-
tions of this report and for those real solutions which can be adequately
represented by these equations, it is possible to evaluate these limits
exgcfg{)with the aid of the limiting behavior expressed by equations (74)

an .
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From equations (85), (74), and (67) we find that

Tim EH - u?(p) - RT 1n xi]

ug(p) - u3(p) i

m - mp
N N
- Tim (Z 3 cp(z)e.(ii')xk - RT) n x,
xm+6mp 2=1 k=1
Tim (%(1) - RT) In x.
X +8 p 1
m “mp

This then permits the enunciation of a simple theorem:

The Timit u?(p) exists and u?(p) = u:(p) if and only if

i=p or eg;)/RT = 1.

The calculation of ug(w) is a bit more involved. If we use m_= xrmw/x
then from equations (86), (81l), and (75) it can be shown that

o - v, e:w/vaT
k() - wS(u) + AT “‘ﬁmm) (s,) J
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where ¢, and s:m are defined by

Tw
\
M N
o.o = -I . - - (R') e (9’)
P P
s (87)
@ N 0
Cow - _E Vieiw J

32



From this formula there results a second theorem:

o o - v, e:wlvaT
The Timit ”c(w) exists and uc(w) = uo(m) - RT 1In (mw) (v )

w

if qu only if vi, =0 or (“im

=0 and e /v RT =1) for all i.
Tw W

For o = w we see that ug(w) can exist only if Vi = 0 for all i, which

clearly is not possible for it violates the condition (55) that vy > 0.
Thus ug(w) never exists and ug(w), o # w, only exists under special circum-

stances. The nonexistence of uz(m) is a consequence of the composition
dependence used in the second term of the defining equation (86) and not be-
cause of the behavior of M. The limits u%(p) and u%(w) generally do not
exist simply because the parameters €§§) are permitted to differ from RT

for the class of solutions under discussion.

Thermodynamicists are not always content with giving thermodynamic
properties relative to reference values. They often insist on expressing
properties relative to a reference function with the expectation that
properties relative to a suitably chosen function will exhibit simpler
behavior than the property itself. This practice leads to the definition of
activity coefficients both for N-ary solutions and for subspaces of these
solutions. A common definition for the activity coefficient y; in an
N-ary solution, relative to uj, is

PR + RT In (Yixi) (88)

while for solutes in a subspace of an N-ary solution the activity coefficient
Ygs 0 # w, relative to ﬁc is conventionally defined as

N
u, = g + B RT |In S + 12 (\)_io/\)o) in (

}) vhm1> o w (89)
TFW

The following theorem is a trivial consequence of the definitions of the
activity coefficients and the values u?(p), ug(m):

The 1limit 1im 1n v,

i
-+
Xm Gmp

exists and equals [u?(p) - ;i] /RT if and

only if u?(p) exists. The Timit 1im 1ny_, o 4 w, exists and
X »§
o]

— pw
equals (ug(m) - 30)//'vGRT if and only if ug(w) exists.

Clearly, since u?(p) and ug(w) do not generally exist, £ and v will
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generally not have finite limiting values for members of the class of solu-
tions under discussion. Nonetheless it is possible to define activity coef-

ficients ¥; and ¥, which will have finite limiting values for all members

of the class. An obvious choice would be the definitions

N N
i = "i(p) + Eéa €51k Tn X + RT 1In iF,
> (90)
-1 M
= + + —
wo Ew (w) nn 1=Z:]_ Vi t§1 5%t 1n X;F v RT 1In Yo J

and it is clear from equations (74) and (8l) that ¥, and ¥ both approach
unity for the infinitely dilute solution. ! °

The result that y; and vy, may not have finite 1imiting values is of
considerable importance because they are sometimes used to calculate practi-
cal osmotic coefficients for the solvent in dilute binary solutions by quad-
rature. The integration extends from zero solute molality to some finite
value and requires the extrapolation of the solute activity coefficient to
zero molality. Consequently the value of the osmotic coefficient calculated
in this manner is dependent not only on the activity coefficient data, but
also on the chosen method of extrapolation. The extrapolation methods chosen
always assume that the solute activity coefficient (89) is finite, actually
unity, at zero molality. The resulting formula for the osmotic coefficient
(ref. 25) (also see, e.g., Pitzer and Brewer, ref. 24, eq. (23-22), p. 339)
implies that its value is also unity at zero molality. But since the assump-
tion on which it is based is not generally valid for the class of solutions
under discussion, it is necessary to look directly at the 1imiting behavior
of the practical osmotic coefficient for these solutions.

Practical osmotic coefficients are defined in terms of the solvent chem-
ical potential. For an N-ary solution we have the definition

0, = —xp(up - uB)/RT %;% X (91)

while for a subspace it is

o = —Xm(uw - u:)/RT T%) v X (92)

w

(see Pitzer and Brewer (ref. 24), eq. 20-28), p. 263, and eq. (34-33),
p. 570). If we use equations (91), (73), (74), and (67), we see that

Tim ¢ = Tlim ¢ _/x
X 6 x» PP
m °mp m “mp
N -1
=- tim Xoe x (2 x) 1- 2 x,
Xpomp k=1 PC T\ i #p
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If we use the expansion 1In(l + a) = o, it follows that

® 1 (1)
= = RT 93
L x]l? ¢ = Spp ! (93)
m “mp

To calculate the T1imiting value of ¢,, we first observe that

-1
lim s = lim ¢ /x = lim GT 2:v€%> {B;-udwﬂ - Em- Wﬁmﬂ}
X *§ X +68 X +6§ Huw
P Y P P P pw

w w

But if equations (83) and (87) are used for w* - w (w) and equation (81)

and the first member of (56) are used for w, - u:(w), then we may write

A.
N Jjw
—Ze _1. n\)_1 (Ev as x*épw
jm1 dew Je e Rl J9° °
where
. ®
A =vnn 2: e X le
wT _1 wT ww
T=
a =1 M )
Ay =V, Eéa eijT/ejw

But it is easy to see that
lim A . = 1= 1im A,
X +6 ® X +6 Ju

(] e P

w w

and consequently

N -1 M
. -1 ® . -1
lim ¢ = -(v RT) > €. v, lim > v .x In {vi 2 v. x
X +6 w w j=1 Jm\]uux"‘S hw T T Jw0=1 Jo"o
p o puw P Pw

If, for a given value of j, e?mvjm = 0, then we get no contribution to the

1imit from this term. If, on the other hand, “jmegw # 0, then this implies

that thé term will contribute and also that “jm # 0. For such a value of
J we see, by using x =1 - ; X , that
w oFw o}
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where in the last step I used 1In(l + a) = «. From this it is clear that the
contribution of a particular term is dependent on the direction in which one
approaches the infinitely dilute solution and consequentiy so too is the lim-
iting value of ¢,. Suppose we approach the infinitely dilute solution along
a line of fixed solute proportions, that is, along a curve whose parametric
representation in the vicinity of the infinitely dilute state is given, to
first order in t, by

X, =a.t, A # ow, a, >0, §: a, £0
where a, are constants and t s a marking parameter for the curve.

Clearly, we then have

1 M M
. -1 -1
1im Z: v_X In [v. E v, X = v, E: (v // 2: v
Xp*dpw <r:£w > <Jw o=1 J° 0) Jo rfw gr J T#w

If we designate the Timiting value of ¢, along this direction by ¢:(ak),
then

e7(a.) = (v RT) e (v. - v.a (94)
. v J'3v§i¥0 J‘”[JE» Jo T);.;u

where the summation over j 1is to be read as the sum over all j values
such that wvj, # 0. For the specia] case of a path along which only one sol-
ute is present we have and a; # 0 if o 1is the label for that
solute. Under these cond1f1ons the resu]t (94) specializes to

-+ =] _1 a o«

¢ (a =0) = ¢ (¢) = (vv RT) e - E (95)
w' Afoc w o w ww Ja\) ¥0 Jm Jc

If v, = 1, then only one term in the sum over j 1in equations (94) and (95)
survives and also e? = e(l) nd e:m = ii). From equation (95) we can
conclude that ¢ (o ) w111 depend on the solute only through v, if and only
if the sum over j vanishes. This will occur, for example, if VigVie = 0
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or e?m =0 for all 1i. Similarly it is true that v0¢:(c) = vT¢:(T) if

and only if . z: ejm(vjc - va) = 0, and this will happen if
Javy w:/:O
(\;1.c - “ir)“im =0 or €5, = 0 for all 1.

CONCLUDING REMARKS

In this report I have constructed a function to represent the composi-
tion dependence of the Gibbs free energy for a class of nonideal solutions
and studied some of its properties. The function has several useful charac-
teristics: (1) Its parameters, which depend on the intensive thermodynamic
variables which specify the state, appear linearly. (2) It contains a loga-
rithmic singularity in the region of dilute solutions and contains ideal
solutions and regqular solutions as special cases. (3) It is applicable to
N-ary systems and reduces to M-ary systems (M < N) in a form invariant man-
ner. Because the parameters in the function occur linearly, all discussions
of the Gibbs free energy can be translated immediately to other thermodynamic
functions. For example, in the case of a fluid, the intensive thermodynamic
variables are the temperature T and pressure P, and the Gibbs free energy
(eqg. (50)) can be converted into equations for enthalpy and volume by
differentiation.

)(ﬁi ﬁi a@%é”R0.+aQ%ﬁhm>

5 In T s In T 0 X5 %5%

5 ~ N
P aV _ 3(aG/RT) _ (2);. .
RT =~ 2 Tnz = 52& o (x5 N)

xi E a(AE\(]-ﬁ)/RT>+ a<AZgﬁ)/RT>

5 In T 5 In T 10 X% 5%k

The utility of the function I have constructed must be judged not only by
its convenient analytical properties, but also by its ability to reproduce
the data for difficult real systems. This aspect of the problem is examined
in a companion report (NASA TP-1930), where we determine the parameters from
experimental data for several systems by the method of least squares.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, December 15, 1981
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